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ABSTRACT

Many microgravity space-science experiments
require active vibration isolation, to attain suitably low

levels of background acceleration for useful experimental
results. The design of state-space controllers by optimal

control methods requires judicious choices of frequency-
weighting design filters. Kinematic coupling among

states greatly clouds designer intuition in the choices of

these filters, and the masking effects of the state
observations cloud the process further. Recent research

into the practical application of H_, synthesis methods to

such problems, indicates that certain steps can lead to
state frequency-weighting design-filter choices with

substantially improved promise of usefulness, even in the
face of these difficulties. In choosing these filters on the

states, one considers their relationships to corresponding

design filters on appropriate pseudo-sensitivity- and
pseudo-complementary-sensitivity functions. This paper

investigates the application of these considerations to a
single-degree-of-freedom microgravity vibration-isolation

test case. Significant observations that were noted during
the design process are presented, along with explanations

based on the existent theory for such problems.

INTRODUCTION

The isolation of microgravity space-science

experiments from the disturbances of manned space

platforms, requires active vibration isolation; passive
isolation alone is incapable of providing the desired levels

of disturbance attenuation [1, 2, 3, 4, 5]. In designing
controllers for these systems, it is convenient to use a

state-space description for the system dynamics, along

with optimal controls methods (e.g., H,, H a , or mixed-

norm), since these modem approaches facilitate the
design of robustly stabilizing controllers in the case of
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multi-degree-of-freedom (MDOF) systems.

Controller-design difficulties can arise, however,
due to kinematic coupling among states [6]. Such

coupling exists, for example, when relative position
and relative velocity are both chosen as states, since
the latter is the time derivative of the former. In

particular, state kinematic coupling can lead,
innocuously, to conflicting design-filter weights.
These in turn can lead to numerically ill-conditioned

regulator and estimator Riccati equations, and to a

loss of intuition in the design process. State
kinematic coupling can also lead to redundant

design-filter weights, which can lead in turn to an
unnecessary increase in controller dimensionality,

with a consequent increase in the complexity of

controller implementation.
For the microgravity vibration isolation problem,

certain state choices permit kinematically decoupled

filter selections. It has been shown [6] that relative

position, relative velocity, and absolute acceleration
are good state choices for purpose of kinematic

decoupling. With these states, the cheap-control
performance index can be expressed in terms of an

appropriate transmissibility (pseudo-complementary-

sensitivity,) function T_x. fl ) and a pseudo-

sensitivity function S,x. s2o := I- T:x. alp' for a

system having as input the unisolated-platform (ISS,
or "stator") acceleration, and as output, the isolated-

platform (ISPR, or "flotor") acceleration. State
frequency-weighting filters can then be effectively
related to the pseudo-sensitivity- and pseudo-

complementary-sensitivity-function frequency-

weighting filters, to inform the choice of state
frequency-weighting design-filters for loop shaping.

In light of these insights, a reasonable design

approach emerges [6, 7]:
(1) Choose the pseudo-sensitivity-function

frequency-weighting filter shape(s) for good nominal

performance at low frequencies. By "'good nominal

performance" for the microgravity isolation problem,
one means unit transmissibility, for the nominal
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plant, to indirect acceleration disturbances below a comer

frequency driven by rattle-space constraints [8, 9].
(2) Choose the pseudo-complementary-sensitivity

frequency-weighting filter shape(s) for good nominal

performance in intermediate and higher frequencies. By

"'good nominal performance" in these regions, one
means rapid roll-off (for indirect acceleration
disturbances, i.e., disturbances transmitted indirectly

through the umbilicals) leading to low acceleration
transmissibilities above the comer frequency, for the

nominal plant.

(3) Choose frequency-weighting filters to force the
controller to "turn off" [i.e., to add negligible energy into

the closed-loop (CL) system] above frequencies of
interest. One accomplishes this by simultaneously (i)

choosing state (or corresponding pseudo-sensitivity- and

pseudo-complementary-sensitivity-function) design-filter
weightings that place minimal demands for control action
at higher frequencies, and (ii) choosing controller design-

filter weightings that exact heavy control penalties in that
frequency range. This will mean that little control action

is requested at higher frequencies, and that such control as
is requested is of prohibitive cost.

Reference [6] developed a basis for judicious
selection of pseudo-sensitivity- and pseudo-

complementary-sensitivity-function frequency
weightings; the present paper studies in some detail the

results of applying the above design approach to a single-

degree-of-freedom (SDOF) test case, for a reasonable set
of design objectives.

SDOF TEST CASE

Arrangement and description

Consider a one-dimensional spring-mass-damper
isolation system having the arrangement depicted in

Figure t, where d and x are, respectively, the rack and
experiment displacements from their equilibrium
(relaxed-umbilical) positions.

k
m -.----)

--)x

Figure 1. A SDOF MicrogravityIsolator

The system parameters are as follows:

actuator current-to-force gain:

ct = 0.2248 Ibf/amp = 1 N/amp,

umbilical stiffness:

k = i.5 lbf/ft = 21.89 N/m,

flotor mass:

m = 75 Ibm = 2.31 i slug = 34.05 kg,

damping:

c = 0.0374 lbf. s/ft = O. 1638 N. s/m, and

damping factor:

=0.01.
The system has a natural frequency of c0,, = 0.1277

Hz and a damped natural frequency of

to a =_,,_!-_ 2 =0.1277 Hz. Assume that the

actuator is linear, and that it is capable of developing
a maximum force of four newtons, so that a control

current of four amps corresponds to the upper limit of

its linear range.

Equations of motion

From Figure I the equation of motion (EOM) for

the system is ft -k(x-d)-c(x-d)+ctu = re.i:. (1)

Def'me the following states:

relative position: z I = x - d, (2)

relative velocity: z 2 = _ - d, (3)

and (lowpass-filtered) absolute acceleration:

Then the EOMs can be written in standard state-

space form _ = Az_+ Bu + E f, (5)

where -= and _f. = fl/m .

Open-loop transfer functions

The open-loop (OL) system has the following
transfer-function description:

s2X(s) = 2gm,,s +co _ s2D(s)
S2 + 2g o_,,s +ton

s 2
+ F(s) (8)

s 2 +2_ O_n s +o_ 2

cts2 /m

+ , l(s),"l

s- +2g 0_,, s +_o,_

where the damping factor q and the natural

frequency co,, have the usual definitions. The

upper-case variables represent the Laplace transforms
of the time-domain signals corresponding to the

respective lower-case variables, with
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F (s) := Fl(s)/ m. (9)

For the indirect acceleration disturbance ,_(t), the

transfer function to the output acceleration .:/(t) is

2g0_,,s + o_,; _ . Note that the corresponding
s 2 + 2g_,s +t0,_

transmissibility plot will have unity gain at low

frequencies, a double pole (resonance) at damped natural

(D rt

frequency o_a = 0.1277 Hz, and a zero at -- = 6.4 Hz,
2g

for a slope of-! at higher frequencies.

For the (mass-normalized) direct disturbance f(t),

the transfer function to the output acceleration -'_(t) is

S 2

Note that the corresponding
s 2 +2g 0_n s +(on2

transmissibility plot will have a low-frequency slope of
+2 (due to the two zeros at the origin), and a double pole

(resonance) at o_a, , for a slope of zero and unity gain at

higher frequencies.

Available measurements

Assume that relative position and absolute
acceleration measurements are available for controller

use, as is typically the case. Relative velocity is not
directly accessible; this means that an observer will be
needed for state reconstruction, in order to use standard

optimal-control design methods.

Closed-loop transfer functions

Using all available measurements, the CL system will
feed back relative position and absolute acceleration, such

that current l(s) = C t (s)Z 1(s) + C 2 (s)Z 3 (s). (10)

Using the relationships Z t (s) = X(s)- D(s) (I 1)

and Z3(s ) = s2X(s), (12)

one can write the following transfer-function description

for the CL system:

s:X(s)=l - _mj . ./s:t_s_

CONTROL CONSIDERATIONS

Design criteria

The controller, to be acceptable for microgravity

vibration isolation, must shape the CL-acceleration

transmissibility so as to pass low-frequency
acceleration disturbances (to accommodate rattle-

space constraints), to reject intermediate-range
acceleration disturbances, to dampen resonances, and

to "turn off " the controller somewhere below

frequencies of unmodeled system dynamics. These
general requirements can be translated into (1) unit

transmissibility (_10%, with zero DC error) to
indirect acceleration disturbances for low

frequencies, say, below a comer frequency coc of

about 0.01 Hz; (2) rapid rolloff of transmissibility

above the comer frequency, for good attenuation up
to about 10 Hz; and (3) controller turn-off (low

controller gains) above, say, 100 Hz. For the present
case study these were taken as design criteria. It was

also required (4) that the actuator current for the CL

system not exceed 40 amps per lag at all frequencies,

to accommodate the estimated 0.1 lag quasi-steady
disturbances without exceeding the linear range of

the actuator (4 amps). Note that the transmissibility

TLr _2t_ to indirect acceleration disturbances is the

same as the transmissibility Tm from rack

displacement d(t) to experiment displacement x(t).

Measurement selection

Observe that, whereas the controller term

C2 (s) appears only in the denominators of the two

indicated CL transfer functions [Eq. (13)], Cl(s)

appears also in the numerator for the indirect-
disturbance (i.e., the former) CL transfer function.
Observe further that the denominators for the two
transfer functions are the same. These facts mean

that for any controller using only acceleration

feedback, i.e., with C I (s) = 0, if the controller has a

particular attenuating effect on indirect disturbances

d(t) it will also have the identical attenuating effect

on (mass-normalized) direct disturbances f(t). The

same does not hold for feedback of any other state, or
combination of states. Since the only way to

increase the attenuation of both types of disturbance,

for a spring-mass-damper system, is to increase
system effective mass (at least, in a frequency-

dependent sense), any purely acceleration feedback
which improves the attenuation of indirect

disturbances must do so by increasing the effective

system mass. If the designer uses optimal control
methods to design an acceleration-feedback inner

loop that meets indirect disturbance-attenuation

requirements, he will automatically be designing to
attenuate direct disturbances as well. He can then

add a low-control-authority, relative-position-

feedback, outer loop to satisfy any rattle-space
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constraints. In other words, the above state- and

measurement selections allow the designer to devote his

efforts to attenuating only the indirect acceleration
disturbances. If he succeeds in that task, he will also

attenuate direct disturbances. And since the successful

controller adds effective mass to the system, it will tend to

improve, rather than to degrade, system stability
robustness.

CONTROLLER DESIGN

(ACCELERATION-FEEDBACK LOOP)

Design strategy

Various acceleration-feedback controllers were

developed by (!) using state-frequency-weighting design-

filter shapes considered reasonable based on the theory

presented in reference [6], then (2) adjusting the filter
weights and the noise covariances until (3) the indirect

acceleration transmissibility was considered either
acceptable or essentially unimprovable, while (4)

maintaining the control current at all frequencies less than

or equal to 40 ampsdlag. All noise inputs were assumed to

have flat power spectra.

Design filter selection

The rationale for filter selection was first to choose

the desired pseudo-sensitivity- and pseudo-

complementary-sensitivity-function filter shapes, based

on the design criteria. Then corresponding state-
weighting filter shapes were used to begin the

acceleration-feedback controller design. Following the
notation in reference [6], the state-weighting filter on each

of the states Z i (i = l, 2, 3) is designated below by W i ;

the weighting filters on the pseudo-sensitivity- and

pseudo-complementary-sensitivity-functions S+,x..+2 0

and T:x ' +:t) (relating to the indicated input and output

accelerations) are designated, respectively, as Vs. and

Vr. The following equations [6] describe the

relationships among these frequency-weighting filters:

= 7 t:J C• ) (14)
and V r = W 3 . (1 S)

Notice from Equation (14) that either WK or W 2 can be

used alone to match a particular Vs, and that W 3

determines (or is determined by) Vr. The following

table, from Reference [6], indicates the correspondences

among various reasonable design-filter choices, in

graphical form.

Table 1. Reasonable Weighting-FunctionCandidates

WI(s)
tl<" 1(S) = *2/_1 ;=:> -- -3$2

w, (s) \\,
w,(,)= "',/_t' _ $2 .3

Wi(s) _ _2WR(s) = 0 _ __ _
$2

,---,° W,(s) _-,
w,<_)=..,/_, =---=_

W,(s) _ o
W,(s) = +,/_-1 _ - " .z

" /\ S

W,(s)
o = --:--: \<IW:(s) =

$

Thes¢cormspond

to weightson

SvD, or S,-'x.,2o

Selected design scenarios

Four design cases follow. In the first two the

pseudo-sensitivity function is more heavily weighted
than the pseudo-complementary-sensitivity function;
in the latter two, the reverse is true. (The

implications of this distinction will be discussed in

the next major section.)

Case 1: One set of design filters consisted of a

bandpass filter (with consecutive legs having slopes
of +1, 0, -l) on relative velocity, an open filter (i.e.,

zero weighting) on relative position, a Iowpass filter
on absolute acceleration, and a step-up filter (with

consecutive legs having slopes of 0, +l, 0) on control
current; refer to Figure 2. The corresponding pseudo-

sensitivity- and pseudo-complementary-sensitivity-

function weightings, Vs and VT, are shown in

Figure 3. Figure 4 presents the OL- and CL plots of
the pseudo-complementary-sensitivity function

T.,x.+: o [i.e., OL- and CL transmissibilities to

indirect acceleration disturbances a/(t) ]. Figure 5

FILTER SHAPES _V_.91t_
10 ¢ .

10; _- ....
I

F

t,e!

+I
IO'L

lo'k

lO I'
10" t0: I0: 10; 10+

Fn_uency tHz)

Figure 2. Design Filtersfor Case 1
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shows the OL- and CL transmissibilities to direct (mass-

normalized) disturbance f(t). And Figure 6 plots the

actuator current versus frequency, for the CL system, in

amperes per micro-g.

10 _

I01 I

I0'

• 10:

F,Iters VS f(x S (s_ns hi) 8rid Vt for T (com¢) sens In )

 ,o°i
l

Io_L

i
f

IO'L
i

10" 10; 10 = 10: 10'

FrKmency (HZ)

Figure 3. Pseudo-Sensitivity- and Pseudo-Complementary-
Sensitivity-Function Weightings for Case 1

OLANDCL BODE PLOTS

10 2

10 0

i 10.2

.=
:E 10"

0 e

10 _

10 .4 10 2 10 _ 10 2 10 4

Frequency (Hz)

Figure 4. Open-Loop and Closed-Loop Transmissibilities
for Indirect Acceleration Disturbances, Case 1

0L AND CL BODE PLOTS

10 2

10 0

10 .2

c
cB

_; 10'

10.6

I CI a

...............
10 .4 10 .2 10 0 10 2 10 4

Frequency (Hz]

Figure 5. Open-Loop and Closed-Loop Transmissibilities
for Direct Acceleration Disturbances, Case 1

Bode (CL) from Indirect Disturbance (mu-g) to Current

10 s

10 0

10 s

10 's f

10 4 10 "4 10 2 10 0 10 2 10 _

Frequency (Hz)

Figure 6. Closed-Loop Actuator Current Versus Frequency
(amps/micto-g), for Indirect Disturbances, Case 1

Case 2: A second set of design filters consisted

of an open filter (i.e., zero weighting) on relative

position, a lowpass filter (consecutive slopes: 0, -I)

on relative velocity, a bandpass filter (slopes: +!, 0,

-1) on absolute acceleration, and a step-up filter

(slopes: 0, +1, 0) on control current; refer to Figure 7.

The corresponding pseudo-sensitivity- and pseudo-

complementary-sensitivity-function weightings, Vs

and Vr , are shown in Figure 8. Figure 9 presents the

OL- and CL plots of the pseudo-complementary-

sensitivity function T2x .,2 o. Figure 10 shows the

OL- and CL transmissibilities to direct (mass-

normalized) disturbance f(t). And Figure 11 plots

the actuator current versus frequency, for the CL

system.

FILTER SHAPES (VVeighted)

106 !

10'

102

100

102

10"

10 4

10 _

10" 10 z 100 10; 10'

Frequency(Hz)

Figure7. Design FiltersforCase 2
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10 e

10 s

10 4

"_ 10 2

10 °

10 .2

10 4

Filters Vs for S (sens. fn ) and Vt for T (comp sens.

10 _ , _ , _ , , ,
10 4 10.2 10 o 10 2 10 4

Frequency (Hz)

Figure 8. Pseudo-Sensitivity-andPseudo-Complementary-
Sensitivity-FunctionWeightingsfor Case 2

10 2

10 0

10"2

_10 4

10 _

10 .8

OL AND CL BODE PLOTS

10 4 10 .2 100 10 2 10 4

Frequency (Hz)

Figure 9. Open-LoopandClosed-LoopTransmissibilities
for IndirectAccelerationDisturbances,Case 2

10_

10=

10_

[i:
10'

10 •

C¢ ANOCLBOGEPLOTS

10_!
10

.... ...................J
Z .................:...................................i

I
1

10" 10_ 10_ 10_ 10"

FrmBmo/(Hz)

Figure 10. Open-Loopand Closed-LoopTransmissibilities
for DirectAccelerationDisturbances,Case 2

Bode (CL) from IndN'ecl Disturbance (mu-<J) to Current (Amps)
10 _

10 0

10 "s

$

10-'o

10 -15

10 _ 104 10 = 100 10 2 10"

Frequency (Hz)

Figure 11. Closed-Loop Actuator Current Versus Frequency

(amps/micro-g), for Indirect Disturbances, Case 2

Case 3: A third set of design filters consisted of
fiat filters (i.e., constant weightings) on relative

position and control current, an open filter on relative
velocity, and a bandpass filter on absolute

acceleration (slopes: +I, 0, -1); see Figure 12. The
corresponding pseudo-sensitivity- and pseudo-

complementary-sensitivity-function weightings, Ys

and Vr , are shown in Figure 13. Figure 14 presents

the OL- and CL plots of the pseudo-complementary-
sensitivity function. Figure 15 shows the OL- and
CL transmissibilities to direct (mass-normalized)

disturbance f(t). And Figure 16 plots the actuator

current versus frequency, for the CL system.

10'

10:

10_

10"l
Z_IO 4

10_

10°

10 ,:
104

FILTER SHAPES ONe_eO)

OL Trm_ibility to

Indir_t Accclcratioo .

, i , i , i
10_ 10: 10_ 10"_

Frmc_mrcy(Hz)

Figure 12. Design Filtersfor Case 3

10'
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10-2
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10"4

10e

10.8

10"1o
10-4

Filters Vs for S (sens. fn.) and Vt for T (comp. sens. fn)

i , i , i , i ,

10.2 100 102 104 10s

Frequency (Hz)

Figure 13. Pseudo-Sensitivity- and Pseudo-Complementary-
Sensitivity-Function Weightings for Case 3

OL AND CL BODE
ld

lo0

10"z

_.,o`
'5

Io"

Io"

10 i ....

Frequency (Hz)

Figure 14. Open-Loop and Closed-Loop Transmissibilities
for Indirect Acceleration Disturbances, Case 3

ld

10;

110"

10

10 _

10 `0

i

10 _

OL AND CL BODE

OLT.

....ii!....
lo" lo' 1# 1# 1# 1_ _#

Frequency (Hz)

Figure 15. Open-Loop and Closed-Loop Transmissibilities
for Direct Acceleration Disturbances, Case 3

Bode(Ct.) from Jnctrec=Disturbance(rru-g) to Current(An_)
100

10 2

10 "e

10"_° ....
10"e 10"_ 10.2 10o 102 10

Frequeno/(Hz)

Figure 16. Closed-Loop Actuator Current Versus Frequency
(amps/micro-g), for Indirect Disturbances. Case 3

Case 4: A fourth set of design filters consisted

of a selection identical in basic shapes to those of

Case 3 above, with the exception that the bandpass

filter on absolute acceleration had an initial leg with a

slope of +2 instead of +!; see Figure 17. The

corresponding pseudo-sensitivity- and pseudo-

complementary-sensitivity-function weightings, Vs

and V r , are shown in Figure 18. Figure 19 presents

the OL- and CL plots of the pseudo-complementary-

sensitivity function. Figure 20 shows the OL- and

CL transmissibilities to direct (mass-normalized)

disturbance f(t). And Figure 21 plots the actuator

current versus frequency, for the CL system.

RI.'rERSHnPESO,/V_=_l)

1o'
F-_ (Hz)

Figure17. Design FiltersforCase 4
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FiltersVs for S (sens.fn) andVt forT (comp.sens.fn.)
105

10-'° , . , . , .
10"4 10"z 100 102 104 10e

Frequency(Hz)

Figure 18. Pseudo-Sensitivity-and Pseudo-Complementary-
Sensitivity-FunctionWeightingsfor Case4

10 z

10 °
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10"
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10 '2,
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Figure 19. Open-Loop and Closed-LoopTransmissibilities
for Indirect Acceleration Disturbances,Case4

OL AND CL BODE PLOTS
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100

P / ..... / ....
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Figure20. Open-Loop and Closed-LoopTransmissibilities
for DirectAccelerationDisturbances,Case 4
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ld'

i

10z " I

,o.: i
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,o.I , , ",4

10 = 104 I0 a 10a 10 z 10 =
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Figure 21. Closed-Loop Actuator Current Versus Frequency
(amps/micro-g), for Indirect Disturbances, Case 4

OBSERVATIONS FROM THE CONTROLLER-

DESIGN SCENARIOS

Observations related to the regulator

1. A combination of relatively high weighting on

control, and relatively low weighting on both the

pseudo-sensitivity- and pseudo-complementary-
sensitivity functions, leads to controller turn-off at

high frequencies.
Remark: The observed effects are a low control

current (e.g., see Figure 6) and an eventual rejoining
of OL- and CL transmissibilities at high frequencies

(e.g., see Figures 4 and 5), when the controller is no
longer called upon to act significantly on the system.

2. The rate of transmissibility-plot roll-off, above

_c, is affected by the frequency weighting VT on

the pseudo-complementary-sensitivity function. In
general, the steeper the ascent of the pseudo-

complementary-sensitivity-function frequency
weighting, the steeper the descent of the CL-
transmissibility plot. Figure 14 shows the

transmissibility to an indirect acceleration
disturbance, with the filter shapes chosen for Case 3;

Figure 19 corresponds to Case 4. Note the steeper
roll-off in Figure 19, due to the steeper (+2 slope)
initial leg of the pseudo-complementary-sensitivity-

function weighting (Figure 18).

Explanation: The weighting on the pseudo-

complementary-sensitivity function tells the regulator
how much effort to put into indirect-disturbance

rejection, as a function of frequency.
Remark: The use of an observer often tends to

mask this effect with frequency-weighted

observation. This masking is due to the fact that

frequency-weighted observation typically results in

observer poles having time constants of the same

8
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order as those of the regulator poles. With the resultant
observer and regulator coupling, either may dominate in

affecting the overall controller, depending on the choices

of design-filter shapes and weights. It was found that in
Cases 1 and 2 the observer tended to dominate; in Cases 3

and 4, the regulator.

3. For a given, reasonable set (e.g., see Table 1) of

weighting filters Vs. and Vr, the location of o) c can be

adjusted by trading off the respective weightings of the
pseudo-sensitivity- and pseudo-complementary-sensitivity

functions. In general, increasing the former and
decreasing the latter tends to move the comer frequency

to the right.

Explanation: These effects are consistent with the
observations that the pseudo-sensitivity-function

weighting can be viewed as a weighting on relative
position, affecting effective stiffness; and that the pseudo-

complementary-sensitivity-function weighting is
essentially a weighting on acceleration, affecting effective

mass. (As with the preceding item, the observer can mask
this effect.)

Remark: Multiplying the pseudo-sensitivity- and
pseudo-complementary-sensitivity function weightings by
a common factor was found to be particularly effective in

adjusting the comer frequency. This technique was

especially useful in Cases 3 and 4, for which the regulator
tended to dominate the observer. Note that multiplying

by a common factor has the effect, at any given

frequency, of increasing the larger weighting by a greater
amount (additively). This raises its additive (though not

its proportional) contribution to the quadratic cost, so that
the controller-design machinery must focus more
attention to its reduction.

4. The regulator gains are not affected by the process-
or measurement-noise covariances.

Explanation: This result is expected from the well-
known "Separation Principle." The regulator-design

Riccati equation is unaffected by process- or
measurement noise covariances if all the noise signals are
white.

Remark: With colored noise, the dynamics of the

respective process- and measurement-noise frequency-
weighting filters appear in the generalized plant and,

consequently, in the regulator Riccati equation [10]. This
additional information does, of course, affect the regulator

gains.

Observations related to the observer

I. As acceleration measurement noise is increased, the

CL comer frequency ((o c ) moves to the right until, in the

limit, the CL Bode plot approaches the OL Bode plot.

Explanation: In effect, when measurement noise

increases excessively, the observer loses the ability to
reconstruct the states with confidence, and shuts down the

feedback controller.

2. The observer gains are not affected if the cost

functional contains only flat (simPle scalar) weights
on aH state- and control signals. However, if

weighting filters Wi are used on any of those signals,

the observer gains are affected.
Explanation: This result is expected, again, from

the "Separation Principle." The observer-design
Riccati equation is unaffected by simple scalar

weights on the state- and control signals, provided
none of these signals is frequency weighted. Any

frequency weightings of the state- and control

signals, however, appear in the observer Riccati
equation and thus affect the observer gains [ I 0].

3. The achievable isolation is greatly improved by

using the same frequency-weighting filters for
observer design as for design of the regulator.

Explanation: The use of the same frequency
weightings for regulator and observer designs allows
the observer design machinery to have the same plant

information as the controller design machinery. The

observer can consequently focus its state-
reconstruction efforts optimally.

4. For Cases I and 2, increasing the direct-

disturbance process-noise covariance lowers (o c .

The range of co_ that could be achieved by this
means alone extends from about 0.0023 Hz to about

0.6 Hz.

Explanation: Consider the state energy term of
the cost functional, in the following form:

,z

_ =r*'Z'Vsf_ S(_m _)ana_b'T(con_ _rt
ld

ld

1#

lo"

1¢
tcI' 102 10_ t0: 10'

Fra:_W (HZ_

Figure 22. Bode Plots of s2Vs, Vr, and s2VsNr, Case 1

(16)
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Figure 23. Bode Plots of s2Vso Vr, and sZVsA/r, Case 2

Figures 22 and 23 present Bode magnitude plots of s 2 Vs ,

Vr , and S2Vs/V r, for Cases 1 and 2, respectively. The

plot for s2Vs/Vr gives a direct measure (assuming

cheap control) of the cost of relative-position state Z_

relative to that of acceleration state Z s . This relative

importance is assigned to the performance index by the

state-weightings W, (see Equations 14 and 15). In each

of the first two cases the controller design machinery

must focus very heavily on the Zt state. To attenuate a

direct disturbance, the controller can act to increase (in a

frequency-dependent fashion) either effective system
mass, via acceleration feedback; or stiffness, via relative-

position feedback; or both. The high relative cost of
relative-position feedback drives the controller to focus

on increasing acceleration feedback. The resultant
increase in effective system mass drives the comer

frequency down. Since process noise cannot affect

regulator gains (see #2 above), these changes in
acceleration feedback must be accomplished by changes

in the observer gains.
Remarks: Notice here that it is not actually the

controller's "assigned" task to attenuate direct

disturbances. The given design problem is formulated for

accomplishing the attenuation of indirect disturbances.
However, an increase in direct disturbance effects an

increase in the power of X-D, which is heavily

weighted through s:V s, so that direct-disturbance

attenuation is at least indirectly required.
With direct disturbances, the attenuation of most

concern to the controller-design machinery (i.e., from the

perspective of the state-energy term I z ) is from mass-

normalized direct-disturbance F to X- D. Note that F

is approximately equal to s2X for high enough

frequencies, i.e., above about 0.1 Hz for the open-loop
system, and above about 10 Hz closed-loop.

10

5. For Cases I and 2, increasing the indirect-

disturbance process-noise covariance raises C0c. The

range of coc that could be achieved by this means,

with either of those two designs, extends from about
0.01 Hz to about 6 Hz.

Explanation: Consider again the state energy
term in the form of Equation 16, and refer to the plots

for s2Vs/Vr in Figures 22 and 23. Since the

relative-position term dominates the cost, an increase
in indirect-disturbance energy (for the design-model)

requires the controller to focus on minimizing the
relative-position state. To accomplish this, the
controller can act (in a frequency-dependent fashion)
to increase effective stiffness, via increased relative

position feedback; to decrease effective mass, via
reduced acceleration feedback; or both. The high
relative cost of relative-position feedback drives the

controller to focus on reducing acceleration feedback.
The resultant decrease in effective system mass

pushes the comer frequency up. Since process noise
cannot affect regulator gains (see #4 above, previous
section), these changes in acceleration feedback must

be accomplished by changes in the observer gains.
Remarks: Notice that although it is, in fact, the

controller's assigned task to attenuate indirect
disturbances, it is incorrect here to reason that it

could try to do so by lowering effective stiffness or

by increasing effective mass. As indicated in the
paragraph above, precisely the opposite is true. The
reason lies in the (present designers') choice of a

dominant state weighting (s-' Vs ) on relative position
*t

Z i (Equation 16). Because of this weighting, for
indirect disturbances the attenuation of most concern

to the controller-design machinery (i.e., from the

perspective of the state-energy term I z) is really

from s2D to X-D. If V r had been dominant (as

it could certainly have been, by designer choice), the
indirect disturbance would have had its primary

effect on the state-energy cost via acceleration state

Z s . In that case the attenuation could have been

effected by lowering effective stiffness or increasing
effective mass. The somewhat counterintuitive effect

of the controller's reducing effective mass, in

response to increased indirect-disturbance power (in
the design model), illustrates the design difficulties
that sometimes result with kinematic coupling among

states.

6. For Cases 3 and 4, changes in the direct- and

indirect-disturbance process-noise covariances have

negligible effect on c0c .

Explanation: Consider again the state energy
term in the form of Equation 16, and refer to the plots

American Institute of Aeronautics and Astronautics



for s2Vs/V r in Figures 24 and 25. Since for these two

cases the acceleration term (i.e., due to V r ) dominates the

Filters s^2*Vs for S (sens. fn) and Vt for T (comp sens
10'

VT

102 ........................

10" ....... _ ............

10 i . L . , . ,
04 10"z 10° 10_ 10' 10s

Frequency

Figure 24. Bode Plots of s2Vs, Vr, and s2Vs/Vr, Case 3

100
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Figure 25. Bode Plots of s2Vs, Vr, and s2Vs/Vr, Case 4

cost, an increase in disturbance energy (for the design-
model) requires the controller to focus on minimizing the
acceleration state. It can only do this (at least, via the

observer) by changing the quality of the state
observations, in a frequency-weighted sense. In

particular, to have much effect on the controller, the
observer must make its primary contribution to cost

reduction in the region of greatest cost. This region is

defined primarily by the band-pass filter V T , and extends

roughly from about 10 -3 to 104 Hz. It turns out that in

this region the observer's reconstruction of the
acceleration state is already quite good, and nearly exact

in the vicinity of 10 -z Hz, so that the observer has little
room to effect an improvement. Consequently, the

observer can have little effect on Coc. In summary., for

Cases 3 and 4 the dominance of the regulator (due, in

turn, to the good quality, of acceleration-state
reconstruction in the high-cost region) masks the

changes in the controller that can be achieved via the

process-noise covariances.
Remarks: It should be noted that, for these two

cases, toc can be moved quite easily, by varying the

relative contributions of weighting filters Vs and V r

to the quadratic cost. (See the 3 '_ observation in the

previous section.) It is also worth noting that,

although the observer does not affect Coc

appreciably, variations in the disturbance process-
noise covariances do change the depth of the "bowl"

in the "high-cost" region, as the observations of the
acceleration state change in quality.

Additional, general observations

£0 n

1. Above frequency -_- (6.4 Hz) the indirect

disturbance transmissibility plot has the expected -1

slope; the direct disturbance transmissibility plot has

the expected zero slope.
Explanation: The open-loop system has a

tO n
zero at --

2. Pseudo-sensitivity-function weightings not

directly achievable (such as pure integrators) can be

requested via state frequency weightings. [For

example, in Case 2, fiat (i.e., constant) weighting on
relative velocity, corresponds to a single-integration

pseudo-sensitivity-function weighting. As another
example (see Table !), fiat weighting on relative

position, would correspond to a double-integration

pseudo-sensitivity-function weighting.]

3. Considering Item (2) above from another

perspective, pseudo-sensitivity-function weightings
can be achieved by alternate means, according to the
state(s) chosen to be weighted, although the use of an
observer will tend to result in controller differences.

CONCLUSION

This paper has studied a test problem for the

design of a feedback controller by H 2 synthesis.

The particular problem selected treats a single-

degree-of freedom microgravity vibration-isolation
system, with kinematic state-coupling. State-

weighting design filters were chosen based on
reasonable choices for pseudo-sensitivity-function

and pseudo-complementary-sensitivity-function

weightings. Significant observations that were noted
during the design process were listed, along with
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explanationsandcorrelationsto theexistenttheoryfor
suchdesignproblems.

ACKNOWLEDGEMENTS

The authors are grateful for financial support for this
research, under the 1998 NASA/ASEE Summer Faculty

Fellowship Program, and under a subsequent grant from

NASA Marshall Space Flight Center.

REFERENCES

1. Nelson, Emily S., "An Examination of Anticipated g-

Jitter on Space Station and Its Effects on Materials

Processes," NASA TM- 103775, April 199 I.
2. DelBasso, S., "The International Space Station

Microgravity Environment," AIAA-96-0402, January
1996.

3. "System Specification for the International Space
Station," Specification Number SSP41000, Rev. D,

Nov. 1, 1995, NASA Johnson Space Center.

4. DeLombard, R., Bushnell, G. S., Edberg, D.,
Karchmer, A. M., and Tryggvason, B.V.,

"Microgravity Environment Countermeasures Panel
Discussion," AIAA-97-0351, January i997.

5. Grodsinsky, Carlos M. and Brown, Gerald V.,
"Nonintrusive Inertial Vibration Isolation

Technology for Microgravity Space Experiments,"
NASA TM-102386, A1AA-90-0741, January 1990.

6. Hampton, R. David and Whorton, Mark S., "'An

Indirect Mixed-Sensitivity Approach To
Microgravity Vibration Isolation: The

Exploitation of Kinematic Coupling In

Frequency-Weighting Design-Filter Selections,"
ACC00-AIAA0036, June 2000.

7. Hampton, R. David and Whorton, Mark S.,

"Frequency-Weighting Filter Selection, for H_,
Control of Microgravity Isolation Systems: A

Consideration of the "Implicit Frequency
Weighting" Problem," IEEE 99-9184, IEEE
Transactions on Instrumentation and

Measurement, April 2000.
8. Knospe, C. and Allaire, P., "Limitations on

Vibration Isolation for Microgravity Space
Experiments," Journal of Spacecraft and

Rockets, Vol. 27, No. 6, Nov.-Dec, 1990, pp.
642-646.

9. Knospe, C. and Allaire, P., "Limits on the
Isolation of Stochastic Vibration for

Microgravity Space Experiments," Journal of

Spacecraft and Rockets, Vol. 28, No. 2, March-
April 1991, pp. 229-237.

10. Hampton, R. D., Knospe, C. R., Allaire, P. E.,
and Grodsinsky, C. M., "Microgravity Isolation

System Design: A Modem Control Synthesis
Framework," Journal of Spacecraft and Rockets,

Vol. 33, No. !, January-February 1996, pp. 10 I-
109.

12

American Institute of Aeronautics and Astronautics


